
TITLE "Ram control block";

%INCLUDE "temp.inc";%

% Handle the handshaking between the rest of the system and the ram%
% Neal Wilcer%
% 7/6/98%

SUBDESIGN ramctrl
(
 rfclk : INPUT;
 DivBy4 : INPUT; % Clock that synchs the ram R/Ws %
 RamSel : INPUT; % Bit that selects the ram as the address and data source %
 VmeA[3..1] : INPUT; % Address bits used to select ram bank %
 SeqMemOe : INPUT; % Emu enabled signal from the emu register, if active (high)
 enable the ram to be dumped to '374 latches %
 /reset : INPUT; % reset signal for the entire board %
 RamAck : OUTPUT; %Acknowledge from this block saying that the r/w was%
 %successful %
 Write : INPUT; %Signal signifying a write of the ram%
 Read : INPUT;
 nBankWr : OUTPUT; % Direction control for the bi-directional buffers that%
 %write or read data to/from the ram. Low = write (A > B)%
 nRIO_En[6..0] : OUTPUT; % Enables for the bi-buffers. These signals are actually%
 %the lower 3 address bits %
 nBank_En[6..0] : OUTPUT; % Enables for one of 7 banks of ram. These signals are also%
 %the lower 3 address bits %
 nRam_Write : OUTPUT; % Write strobe to the ram. Must be a pulse%
 nRam_Oe : OUTPUT; % Output enable for the ram. If low, the rams are set to pump%
 %or read data, if high, the rams are set to accept or have data %
 %written to them %

)
VARIABLE

 % used a gray code counter to eliminate glitches %
 ramaccess : MACHINE
 OF BITS (st1,st2,st3)
 WITH STATES
 (NoOp = B"000",
 CheckReadWrite = B"001",
 ChooseRamBank = B"011",
 PassData = B"010",
 EndWrite = B"110",
 SendAck = B"111",

 CleanUp = B"101",
 n8 = B"100"
);

 AckFlop :DFF; % latch the RamAck signal %
 BankWrFlop :DFF; % latch the nBankWr signal %
 RIOFlop[6..0] :DFF; % latch the nRIO_en[6..0] signal %
 Bank_EnFlop[6..0] :DFF; % latch the nnBank_En[6..0] signal %
 RamWrFlop :DFF; % latch the nRam_Write signal %
 Ram_OeFlop :DFF; % latch the nRam_Oe signal %

BEGIN

 % List of signals used to set D inputs for flops that feed that outputs %
 AckFlop.d = (RamSel AND SendAck AND !SeqMemOe);
 BankWrFlop.d = !(Write AND !SeqMemOe AND RamSel);
 RIOFlop[0].d = !((vmea[3..1] == 0) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 RIOFlop[1].d = !((vmea[3..1] == 1) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 RIOFlop[2].d = !((vmea[3..1] == 2) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 RIOFlop[3].d = !((vmea[3..1] == 3) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 RIOFlop[4].d = !((vmea[3..1] == 4) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 RIOFlop[5].d = !((vmea[3..1] == 5) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 RIOFlop[6].d = !((vmea[3..1] == 6) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 Bank_EnFlop[0].d = !((vmea[3..1] == 0) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 Bank_EnFlop[1].d = !((vmea[3..1] == 1) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 Bank_EnFlop[2].d = !((vmea[3..1] == 2) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 Bank_EnFlop[3].d = !((vmea[3..1] == 3) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 Bank_EnFlop[4].d = !((vmea[3..1] == 4) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 Bank_EnFlop[5].d = !((vmea[3..1] == 5) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 Bank_EnFlop[6].d = !((vmea[3..1] == 6) AND !SeqMemOe AND (Write OR Read) AND RamSel);
 RamWrFlop.d = !((Bank_EnFlop[] != 127) AND Write AND PassData AND !SeqMemOe AND RamSel);
 Ram_OeFlop.d = (Write AND !SeqMemOe AND (nRIO_En[] != H"7F"));

 % the clock used for the state machine %
 ramaccess.clk = DivBy4;

 AckFlop.clk = rfclk;
 BankWrFlop.clk = rfclk;
 Ram_OeFlop.clk = rfclk;
 RIOFlop[].clk = rfclk;
 Bank_EnFlop[].clk = rfclk;
 RamWrFlop.clk = rfclk;

 % power up/ reset conditions %

 AckFlop.clrn = /reset;
 BankWrFlop.prn = /reset;
 Ram_OeFlop.clrn = /reset;
 RIOFlop[].prn = /reset;
 Bank_EnFlop[].prn = /reset;
 RamWrFlop.prn = /reset;

 RamAck = AckFlop.q;
 nBankWr = BankWrFlop.q;
 nRIO_En[6..0] = RIOFlop[6..0].q;
 nBank_En[6..0] = Bank_EnFlop[6..0].q;
 nRam_Write = RamWrFlop.q;
 nRam_Oe = Ram_OeFlop.q;

 CASE ramaccess IS
 WHEN NoOp => % wait for the ram select bit to be active before we do anything %
 IF !RamSel THEN
 ramaccess = NoOp;
 ELSE
 ramaccess = CheckReadWrite;
 END IF;
 WHEN CheckReadWrite => % wait here until either the read or write line goes active %
 IF ((Write == GND) AND (Read == GND)) THEN
 ramaccess = CheckReadWrite;
 ELSE
 ramaccess = ChooseRamBank;
 END IF;
 WHEN ChooseRamBank => % if the lower three bits of the vme address == 7, the user is trying to
 access a non existant bank of ram, so just send a dtack %
 CASE (VmeA[]) IS
 WHEN 7 =>
 ramaccess = SendAck;
 WHEN OTHERS =>
 ramaccess = PassData;
 END CASE;
 WHEN PassData =>
 IF ((Write == VCC) OR (Read == VCC))THEN
 ramaccess = EndWrite;
 ELSE
 ramaccess = SendAck;
 END IF;
 WHEN EndWrite =>
 ramaccess = SendAck;
 WHEN SendAck =>

 IF (RamSel) THEN % if ramsel is still active , wait here until it goes inactive %
 ramaccess = SendAck;
 ELSE
 ramaccess = CleanUp;
 END IF;
 WHEN CleanUp =>
 ramaccess = n8;
 WHEN n8 =>
 ramaccess = NoOp;
 END CASE;

END;

